今天(2017年10月10日),中国科学院国家天文台发布消息,宣布科学家们使用位于贵州的FAST望远镜找到了2颗新的脉冲星。
发布会上提到,其实已经发现6颗,不过由于发布会是几周前开始准备的,所以只发布了2颗。
这是中国人第一次使用自己的望远镜找到新的脉冲星。
虽然,人们早就知道FAST这么大的望远镜肯定能够找到不少脉冲星,但第一次找到,还是令很多人感到兴奋的。
脉冲星是特殊的中子星,因为其辐射束会周期性快速扫过地球,使地球人看到一个个周期脉冲而得名。
脉冲星可谓宇宙中最为神奇的天体之一。
为什么这么说?
因为对脉冲星进行观测,不仅能够研究脉冲星自身的极端物理状态,还能对星际介质、银河系磁场、引力波等目标进行研究。也正因为脉冲星的特殊性,诺贝尔物理学奖两度授予了脉冲星相关发现(发现第一个脉冲星;发现第一个双星系统中的脉冲星,并利用它很好地验证了引力波辐射理论)。
图一:上边部分展示的是一颗旋转中的中子星及其两个辐射束。下边部分红点指示对应时刻我们看到的中子星的亮度。黄色曲线是中子星旋转一周的亮度变化。 图源: http://www.ligo.org/science/Publication-S6VSR24KnownPulsar/
目前已知的2000多颗脉冲星中,大部分脉冲星是澳大利亚Parkes望远镜使用多波束接收机通过巡天观测找到的。多波束接收机的使用,使得一个望远镜能顶好几个用,这也是Parkes望远镜成功的原因之一。
虽然FAST目前还是用的单波束接收机(这样一次只能看一个目标),但不久的将来会安装上19波束接收机,到时,观测能力还将大大增强。有分析认为,FAST得益于巨大口径带来的高灵敏度,未来有希望找到4000颗脉冲星,这里面应该会有不少有意思的发现。
脉冲星的特殊性,以及FAST在脉冲星搜寻中的优势,使得寻找未知脉冲星成为FAST重要的科学目标之一。
那么,FAST目前是怎么找脉冲星的呢?说起来,这不仅是个技术活,还是个体力活。
一、漂移扫描观测
我们知道,FAST可以通过调节馈源仓位置和面板形状来调节望远镜指向,从而观测天空中某个特定的位置。不过,在FAST建成早期,望远镜的各个系统还不能很好地运行,指向调节尚不灵活,所以,科学家们通常使用一种称为“漂移扫描”的方式来进行观测。
所谓的“漂移扫描”其实很简单,和“守株待兔”的思路有点像。就是望远镜不动,比如固定地指向天顶,然后等着天体东升西落,自己运动到望远镜的视野里面。使用“漂移扫描”,望远镜只能盯着某个赤纬(天球坐标系中的赤道坐标系的纬度,类似于地理经纬线在天上的投影),所以只能观测到这个赤纬上的源。随着时间的推移,这个赤纬上的天体就会依次被望远镜所观测到。
那如果我们想看其他赤纬的天体怎么办?那就得挪望远镜指向,让它指到其他赤纬上(FAST早期只是动得不灵活,不是不能动)。
通过“漂移扫描”,我们的FAST不用怎么动就能对天空中不同的位置进行扫描。
不过用这种方式进行观测有个不好的地方,就是每次天体经过望远镜视野的时间很短,对FAST来说,最长也就1分钟不到的时间。观测时间短,就意味着我们只能看一些比较亮的天体。好在我们的FAST够大,很多其他望远镜觉得暗的天体,对FAST来说都是“比较亮的”。
说了这么多,我们要寻找的脉冲星在哪儿呢?
人们是大概知道脉冲星在银河系里面的分布的,即:主要分布在银盘和球状星团中。FAST在进行“漂移扫描”的时候,是会“扫”过银盘的(也可以扫过球状星团。只是球状星团尺度很小,我们扫过它的概率比较小)。我们对相应的数据进行分析,就会更有希望找出新的脉冲星。
图二:这是光学波段整个天空的照片,正中央是银心所在。图中白色圆圈指示的是此次发现的其中一颗脉冲星J1859-0131在银河中大致的位置,黄圈则是发现的另一颗脉冲星J1931-01的位置。
二、脉冲星数据
在漂移扫描过程中,我们需要记录能够用来进行脉冲星搜寻的数据。这需要满足两个要求:一、足够高的时间分辨率;二、一定的频率分辨率。
一般地讲,我们会周期性地看到脉冲星发出的脉冲信号。相邻两个脉冲信号之间的时间差(所谓的脉冲周期),在1.4毫秒到23秒之间不等。而脉冲信号的宽度,通常只有这个时间差的十分之一。只有数据的时间分辨率足够小,我们才能探测到随时间快速变化的脉冲星信号。
我们知道,电磁波有不同的频率。最直观的感受,就是自然光能够被分为彩虹色,不同颜色就是不同频率的电磁波。在记录用作脉冲星搜寻的数据时,因为后续数据处理的需要,我们要将不同频率的电磁波分成多份记录,也就是要记录光谱数据(一般叫做频谱)。如果分的份数多,那频率分辨率就高,能更好地探测不同频率信号的变化。脉冲星数据要求划分一定的份数,但不用太多,够用就好,这里对选取标准就不细讲了。
所以,最后我们得到的会是什么样的数据呢?就是一条条连续的频谱,且相邻两条频谱的间隔时间很短,一般只有几百或者几十个微秒。 |